Week Three Review Answers

- 1. (a) On the interval (a,b) the uniform density function is $\frac{1}{b-a}$. Since b=1, and a=0, b-a=1 and $\int_{0.55}^{0.65} dx = x|_{0.55}^{0.65} = 0.65 - 0.55 = 0.1$
 - (b) $\int_{0.55}^{0.65} dX_1 \int_{0.3}^{0.4} dX_2 = (0.1) \times (0.1) = 0.01$
 - (c) $\int dX_1..100..\int dX_{100} = 0.1^{100} = 10^{-100}$
 - (d) It's impossible to get any observation within the prescribed distance.
 - (e) Find c_1 and c_2 such that $\int_{c_1}^{c_2} dX = 0.1$ Let the length of side be c_2 - c_1 = δ . Then when p=1, δ =0.1 when p=1, δ ²=0.1 or δ =0.31 when p=100, δ ¹⁰⁰=0.1 or δ =0.977

At large *p* the hypercube sides include the vast range of each variable, so you can't get very good predictions.

2. The probability that a student will receive an A can be determined from the logistic

model,
$$p(X) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2}}$$
.

- (a) Substituting the parameter values gives $\frac{e^{-6+0.05(40)+1(3.5)}}{1+e^{-6+0.05(40)+1(3.5)}} = 0.378$
- (b) We know that the log of the odds ratio equals $\beta_0 + \beta_1 x_1 + \beta_2 x_2$ or

$$\log\left(\frac{0.5}{1 - 0.5}\right) = -6 + 0.05x_1 + 1(3.5)$$

$$\frac{6 - 3.5}{0.05} = 50 \text{ hrs} = X_1$$

3. Stock Market Data

Can we predict the direction of stock market change based on the five previous days (lag 1-5) of change, today's volume and date (year)?

Based on the previous logistic regression results only Lag1 and Lag2 will be used and the training data will come from year 2005.

- > library(ISLR2) attach(Smarket)
 > unique(Year)
- [1] 2001 2002 2003 2004 2005
- > train <- (Year < 2005)

```
> Smarket.2005 <- Smarket[!train, ]# all the Smarket data
                    not equal to 2001, 2002, 2003, and 2004
> library(MASS)
> lda.fit <- lda(Direction ~ Lag1 + Lag2 , data = Smarket ,
                 subset = train)
> lda.fit
Call:
lda(Direction ~ Lag1 + Lag2, data = Smarket, subset =
train)
Prior probabilities of groups:
    Down
               Uр
0.491984 0.508016
Group means:
            Lag1
                        Lag2
Down 0.04279022 0.03389409
Up -0.03954635 -0.03132544
Coefficients of linear discriminants:
            LD1
Lag1 -0.6420190
Lag2 -0.5135293
> contrasts(Direction)
     Uр
Down 0
Up 1
########
# To predict class membership Lag1\times(-0.64) + Lag2\times(-0.51)
```

If this is large -> predict Up, small -> predict down

- > par(mar=c(0,0,0,0))
- > plot(lda.fit)

- [1] "class" "posterior" "x"
- # class are the lda predictions
- # posterior has a column for each class with the posterior
- # probability predicted from equation (4.15)
- # and x is the discriminant function
- > Direction.2005 <- Direction[!train] #Observed directions
 in 2005</pre>

lda.class Down Up

Down 35 35 Up 76 106

The total number of samples predicted to be Down was 70. These correspond to posterior probabilities greater than 50%.

> sum(lda.pred\$posterior[, 1] >= .5)
[1] 70

You can increase this probability to be more certain of a correct calculation although with these data none of the probabilities is much greater than 50%.